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We study the Nernst effect due to vortex motion in two-dimensional granular superconductors using simu-
lations with Langevin or resistively shunted Josephson-junction dynamics. In particular, we show that the
geometric frustration of both regular and irregular granular materials can lead to thermally driven transport of
vortices from colder to hotter regions, resulting in a sign reversal of the Nernst signal. We discuss the
underlying mechanisms of this anomalous behavior in terms of heat transport by mobile vacancies in an
otherwise pinned vortex lattice.
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The Nernst effect—the generation of a transverse voltage
when a temperature gradient is applied to a metal or super-
conductor placed in a perpendicular magnetic field—has be-
come an important experimental probe of correlation effects.
For example, recent experiments on high-Tc cuprates1 and
conventional superconducting films2 have found a remark-
ably strong Nernst signal in a wide regime above the critical
temperature. Being small in most ordinary metals, the Nernst
effect is naturally attributed to superconducting fluctuations,
either of Gaussian nature3–5 or due to vortex fluctuations.1,6,7

In the case of granular superconductors, the added complica-
tion of geometric frustration may significantly affect trans-
port properties. Here, we show that anomalous sign reversals
of the Nernst signal can appear in such systems, as the mag-
netic field is varied.

Let us define a geometry with a perpendicular magnetic
field Bz and a temperature gradient −�xT inducing an electric
field Ey. The Nernst signal eN and the Nernst coefficient � are
then defined by

� =
eN

Bz
=

1

Bz

Ey

�− �xT�
. �1�

In metals the Nernst effect is typically small, being propor-
tional to particle-hole asymmetry, and � can be either posi-
tive or negative.8 The sign convention adopted here con-
forms with that used in the recent literature.1,3–8 In type-II
superconductors, the Nernst effect is usually much stronger.
There, field-induced vortices diffusing down the applied
temperature gradient will generate a transverse electric
field E=B�v, where the drift velocity of the vortices is
v=��−�T�, leading to E=��T�B. The vortex Nernst effect
is thus a diagonal response of the vortex current to a tem-
perature gradient. Notably, the sign of � is positive if vortices
are driven down the temperature gradient from hotter to
colder regions. The only way to obtain a negative value of �
from the vortex motion is then if a situation arises in which
vortices move from colder to hotter regions, against the ther-
mal gradient. A complementary point of view is provided by
an Onsager relation, relating the Nernst signal eN and the
heat current response Jx

Q to an applied electric current Jy, so
that Jx

Q=TeNJy. It follows that Jx
Q=TeN�yyBzvx, which shows

that a negative Nernst signal �for Bz�0� implies heat flow in
the direction opposite that of vortex motion. In this

Rapid Communication we show that such anomalous behav-
ior can indeed be realized in granular superconductors.

Consider first a regular two-dimensional Josephson-
junction array in a magnetic field corresponding to a com-
mensurate filling of flux quanta. At low enough temperatures
the vortices will then form a regular lattice commensurate
with the array. For example, at half-filling f =1 /2 on a square
lattice, the vortices will order in a checkerboard pattern. If
the density of vortices is lowered slightly below this filling,
vacancies are introduced into the system and, in the absence
of any pinning, these will be mobile. An applied temperature
gradient could then produce a drift of these vacancies from
hotter to colder regions, resulting in a net vortex flow in the
opposite direction and consequently a negative Nernst signal.

We have confirmed this scenario by numerical simulations
in regular arrays �see Figs. 1 and 2 below�. Our results show
that a negative Nernst signal also can appear in moderately
random Josephson-junction networks. We have used two dif-
ferent models for the dynamics of the arrays: �i� Langevin
dynamics and �ii� resistively shunted Josephson-junction
�RSJ� dynamics. The former corresponds to overdamped
model-A dynamics,9 while the latter takes into account cur-
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FIG. 1. �Color online� Nernst signal eN versus filling fraction f
for a 20�20 square lattice at different temperatures T. Notice how
the Nernst signal goes clearly negative in the region 0.4� f �0.5.
Inset: zoom-in of eN at T=0.19 around f =1 /3, where eN also be-
comes negative.
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rent conservation �but neglects charging effects, i.e., no grain
or intergrain capacitance�. Previous simulations have been
based on time-dependent Ginzburg-Landau dynamics,4

which take into account fluctuations of the amplitude of the
order parameter, and Langevin dynamics,6 equivalent to the
model we use but with different boundary conditions.

For both Langevin and RSJ dynamics the supercurrent
flowing between two superconducting grains is given by

Iij
s = Iij

c sin��i − � j − Aij�, Aij =
2�

	0
�

ri

rj

A · dr , �2�

where Iij
c is the critical current of the junction, 	0=h /2e is

the superconducting flux quantum, �i is the superconducting
phase of grain i, and A is the magnetic vector potential. We
will take A=Aext+ �	0 /2���, where Aext is constant in time
and corresponds to a uniform magnetic field B=��A per-
pendicular to the array, and �= �
x ,
y� is time dependent
but spatially uniform, describing fluctuations in the electric

field E=−Ȧ=−�	0 /2���̇.10 For Langevin dynamics the
equation of motion is

��̇i = −
1

2e
�

j�Ni

Iij
s + �i, �3�

where �i is a Gaussian white noise with correlations ��i�
=0 and ��i�t�� j�t���= �2kBT� /��ij��t− t��. The sum runs
over the set Ni of superconducting grains connected to i. An
additional equation describes the dynamics of the twists �,10

�
�̇ =
1

2e
�
�ij�

Iij
s r ji + � , �4�

with a time constant �
=�LxLy and ���t��=0, ����t����t���
= �2kBT�
 /������t− t��. Here, the sum runs over all junc-
tions in the network and r ji=r j −ri.

For RSJ dynamics every Josephson junction is shunted by
a resistor R, leading to a total current from i to j,

Iij
tot = Iij

s +
Vij

R
+ Iij

n , �5�

where Vij is the voltage across the junction, given by the ac
Josephson relation,

Vij =
	0

2�
��̇i − �̇ j − Ȧij� . �6�

The Johnson-Nyquist noise in each resistor obeys �Iij
n �t��=0

and �Iij
n �t�Ikl

n �t���= �2kBT /R���ik� jl−�il� jk���t− t��. The equa-
tions of motion are obtained from current conservation at
each grain, and from the expression for the average total
current

�
j�Ni

Iij
tot = 0, �

�ij�
Iij

totr ji = LxLyJ
ext. �7�

This gives a system of coupled differential equations for ��i�
and �. We assume periodic boundary conditions in every
direction above, with a fixed average current density Jext. For
open boundary conditions the fluctuating twist 
 is redun-
dant and should be set to zero in the corresponding direction.

Temperature enters only via the noise correlations and
gets a spatial dependence in the presence of a temperature
gradient. This allows us to calculate the response of the sys-
tem to a temperature gradient. Note that the voltage across
the system is obtained directly in the simulation from Ey =

−�	0 /2��
̇y. It is also possible to calculate the linear re-
sponse via a Kubo formula,

eN =
LxLy

2kBT2�
−�

�

�Ey�t�Jx
Q�0��dt , �8�

where the average heat current density is given by

Jx
Q =

1

LxLy

	0

2�
�
�ij�

	xji
1

2
��̇i + �̇ j� − xij

c Ȧij
Iij , �9�

with xji=xj −xi and xij
c = �xi+xj� /2. For Langevin dynamics Iij

denotes the supercurrent only, while for RSJ dynamics it is
the total current �5�.11 Since the temperature is, by necessity,
uniform when using the Kubo formula it is possible to em-
ploy periodic boundary conditions in this case to eliminate
surface effects. Notice that the formulation given above is
independent of the lattice structure. We consider here square,
triangular, and random lattices.

One may think of a disordered granular thin film as con-
sisting of a random packing of variable sized grains. Every
grain is connected to each of its neighbors via a tunnel junc-
tion with a critical current Iij

c . Thus, we end up with a ran-
domly connected array of Josephson junctions. We model
this by generating a random set of points with unit density in
a square, subject to the condition that their separation is
larger than some given number dmin. Different values of dmin
give different levels of heterogeneity, with different widths in
the distribution of grain-size diameters. Nearest neighbors
are connected via a Delaunay triangulation, with the grains
as the corresponding Voronoi cells. Some examples are
shown in Fig. 3 with a heterogeneity varying from 7% to
28%.
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FIG. 2. �Color online� Nernst signal eN versus filling fraction f
for a 20�20 triangular lattice at different temperatures T. Here, eN

shows more structure as a function of f , but again becomes clearly
negative for f between 0.4 and 0.5.
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The equations of motion, Eqs. �3� and �4� for Langevin
dynamics and Eq. �7� for RSJ dynamics, are solved numeri-
cally using a forward Euler discretization with time steps of

t=0.02 and 0.04, respectively. Note that although we use a
forward Euler scheme to integrate the dynamical variables, it
is crucial to use a symmetric discretization for the heat cur-
rent Jx

Q.11 For Langevin dynamics the sampling time is set to
20�106
t, after a warm-up of 2�106
t, while the corre-
sponding figures are 10�106
t and 1�106
t for RSJ dy-
namics. In addition the results are averaged over 64 or more
independent runs. We consider systems with periodic bound-
ary conditions in both directions with sizes up to 160�160,
but since finite-size effects are negligible for systems larger
than 20�20, only results for this particular system size are
presented here. The Nernst signal eN is calculated from equi-
librium fluctuations using the Kubo formula �8�, while set-
ting Jext=0. The validity of Eq. �9� and the discretization
used is confirmed by checking that the two ways of calculat-
ing eN �Kubo formula and response to a thermal gradient� are
consistent. We also verify that the same result is obtained
from the response of the heat current to an applied electric
current, via an Onsager relation. Temperature is measured in
units of the Josephson temperature EJ /kB= Ic	0 /2�kB, and
the Nernst signal eN is given in units of kB /2e� and
2�kBR /	0 for Langevin and RSJ dynamics, respectively. In
the majority of our simulations we use Langevin dynamics
since it is computationally less expensive and gives qualita-
tively the same behavior �see Fig. 4 below�. Unless other-
wise stated, the results below are for Langevin dynamics.

Figure 1 shows the Nernst signal eN as a function of fill-
ing f =B�Apl� /	0 for a square lattice ��Apl� is the average
plaquette area�. The different curves correspond to different
temperatures. At low filling a sharp increase culminating in a
maximum around f =0.05–0.15, depending on temperature,
is observed. This is followed by a decrease in the Nernst
signal up to half-filling. The tilted-hill profile at high tem-
peratures resembles experimental data of bulk
superconductors.1,2 However, for low temperatures the
curves have significant structure due to geometric frustration
as the filling is varied through different commensurate val-
ues. In particular, notice the sign reversal of eN just below
half-filling. The inset shows a blowup of the region close to
another commensurate filling f =1 /3, where yet another such
a region of negative Nernst signal appears, albeit only in a
very small parameter regime.

This anomalous sign of the Nernst signal close to, but
below, commensurate fillings such as f =1 /3 and 1/2 can be
connected to the large rigidity �i.e., a relatively high melting
temperature� of the vortex lattice there. This means that as
temperature is raised, the vacancy defect lattice will melt
first, while the vortices remain pinned to the underlying lat-
tice. The vacancies can then diffuse down the temperature
gradient, resulting in an opposite net vortex flow. Raising the
temperature further will eventually melt also the vortex lat-
tice, restoring a positive Nernst signal. It is reasonable to
expect that also other regions of negative Nernst signal will
show up in narrow parameter windows at low temperatures,
just below different commensurate fillings. This scenario of
melting transitions has been observed in simulations of
square Josephson-junction arrays at f =5 /11�0.455.12 Fur-
thermore, the rich structure of eN is reminiscent of the struc-
ture of the resistance as a function of f seen in both
simulations13 and in recent experiments14 on square
Josephson-junction arrays.

For a triangular lattice �see Fig. 2� eN displays a similar
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FIG. 3. �Color online� Top: Nernst signal eN versus filling frac-
tion f at T=1 for 20�20 random lattices with different values of
the parameter dmin. Each curve is an average over 16 disorder real-
izations. Bottom: examples of lattice structure and size �diameter�
distribution of the grains for different values of dmin. The grain-size
standard deviation � is also given in each histogram.
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FIG. 4. �Color online� Comparison of the Nernst signal eN ver-
sus filling fraction f between RSJ and Langevin dynamics, and
between models with critical currents Iij

c = Ic and Iij
c �dij

� for a 20
�20 random lattice with dmin=0.8 at T=1. Each curve is an aver-
age over eight disorder realizations. �The RSJ data extend only up
to f =1.�
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behavior as a function of f , but here the structure due to
geometric frustration effects is even more pronounced. The
Nernst signal goes once again clearly negative in a region
just below half-filling and is strongly suppressed around sev-
eral other fillings, e.g., f =1 /4 and 1/3. The relative size of
the negative Nernst signal ��20%� is more or less the same
compared to the square lattice case.

Note that for perfectly regular arrays the Nernst signal is
periodic, with a period of 1, as a function of filling. Further-
more, there is a vortex-vacancy symmetry around half-
filling, so that eN�f�=−eN�1− f�, i.e., the Nernst signal is
naturally negative over large regions of 0.5� f �1 �not
shown in the figures�. For random networks these properties
are absent, and it is not a priori clear that the oscillatory
behavior with filling persists. Figure 3 displays simulation
results of the Nernst signal versus filling for a couple of
different random lattices with varying levels of heterogeneity
at fixed temperature T=1. As seen, most of the structure
found in regular lattices is now gone. The same is true also
for lower temperatures. There is still a sharp increase at low
fillings, reaching a maximum around f =0.05, followed by a
smooth decay with increasing f . A negative region appears in
the most ordered samples �dmin=0.8, �=0.08� for fillings
0.4� f �1. When increasing the geometric disorder by de-
creasing dmin the region gets smaller, but it is still visible up
to at least dmin=0.4, �=0.23. As the filling is increased fur-
ther, a weak oscillatory tendency can be seen �Fig. 4�. These
sign reversals appear to be remnants of the natural periodic
behavior of regular structures, but with an amplitude which
is quickly damped as filling or disorder is increased.

For granular superconductors RSJ dynamics should give a
more realistic microscopic description of fluctuations com-
pared to the phenomenological Langevin dynamics. In Fig. 4

we compare results obtained using Langevin and RSJ dy-
namics. The curves are essentially identical in the interesting
parameter regime where frustration effects are present. The
same figure also shows the results for a model where the
critical currents of the junctions are taken proportional to the
contact area between the grains or contact length dij

� in two
dimensions, where dij

�’s are the bond lengths of the dual
�Voronoi� lattice drawn in Fig. 3�. Here, the difference is
quantitatively larger, but the qualitative features remain. This
indicates that the geometric frustration dominates the Nernst
effect and that current conservation and model details are
less important in this region.

In conclusion, we have studied the Nernst effect in granu-
lar superconductors using a phase only model with Langevin
and RSJ dynamics. At low magnetic fields the Nernst signal
displays a characteristic tilted-hill profile qualitatively simi-
lar to experimental findings.1,2 For stronger magnetic fields
in regular or weakly irregular arrays, we have found regions
of anomalous sign changes of the Nernst signal, which trans-
lates into sign changes of the Nernst coefficient �=eN /Bz.
This is contrary to the common belief that the vortex contri-
bution to the Nernst coefficient is always positive. A negative
Nernst coefficient implies a net vortex flow from colder to
hotter regions and consequently a change in the dominant
carriers of heat in the system—from vortices to vortex va-
cancies. Therefore, the Nernst effect offers a unique way to
probe the nature of heat carriers in superconducting struc-
tures. We predict that sign reversals of the Nernst signal can
be seen in experiments on artificial regular Josephson-
junction arrays as well as in granular superconducting thin
films at the appropriate magnetic fields.
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